• 2022. 11. 2.

    by. 멀티 존

    728x90
    300x250

    -AI의 첫번째 암흑기-
    (1974~1980) 70년대에 이르자, AI는 비판의 대상이 되었고 재정적 위기가 닥쳤다. AI 연구가들은 그들의 눈앞에 있는 복잡한 문제를 해결하는데 실패했다. 연구가들의 엄청난 낙관론은 연구에 대한 기대를 매우 높여놓았고, 그들이 약속했던 결과를 보여주지 못하자, AI에 대한 자금 투자는 사라져버렸다. 동시에, Connectionism 또는 뉴럴망은 지난 10년동안 마빈 민스키의 퍼셉트론(시각과 뇌의 기능을 모델화한 학습 기계)에 대한 파괴적인 비판에 의해 완전히 중지되었다.그러나 70년대 후반의 AI에 대한 좋지 않은 대중의 인식에도 불구하고, 논리 프로그래밍, 상징 추론과 많은 여러 영역에서의 새로운 아이디어가 나타났다.
    문제는 1970년대 초, AI 프로그램의 가능성은 제한적이었다. 인상 깊은 작품들은 겨우 시험용 버전 정도였고, 어떤 의미에선 '장난감'에 가까웠다. 모든 문제에 걸쳐서 문제를 푸는..AI 연구는 70년대에 더 이상 극복할 수 없는 몇개의 근본적인 한계를 가지게 됐다.몇개의 한계를 통해 십여년 후에 극복되었고, 다른 몇 개는 오늘날까지 남아있다.컴퓨터 능력의 한계 : 정말 유용한 무언가를 이루기에는 메모리 또는 처리 속도가 충분하지 않았다. 예를 들어 로스 퀼리언(Ross Quillian)의 자연어 처리에서 성공적인 완수는 오직 20개의 단어 위에서 발휘되었는데, 이것은 메모리가 꽉 찼기 때문이었다. ++한스 모라벡은 1976년에 컴퓨터가 지능을 가지기엔 여전히 수백만 배 약하다고 논증했다. 그는 비유를 들었는데, AI가 컴퓨터 능력을 필요로 하는 것은 항공기가 마력을 필요로 하는 것과 같다는 것이었다. 컴퓨터 영상에 대해서, 모라벡은 간단하게 계산하여 실시간으로 사람의 망막을 모션 캡처하려면 범용 컴퓨터가 초당 10^9 명령어(1000MIPS)를 처리해야 할 것이라고 추측했다.2011년경 실용적인 컴퓨터 영상 프로그램은 10,000~1,000,000 MIPS를 요구한다. 1976년경 5백만에서 8백만 달러사이에 판매되던 가장 빠른 슈퍼컴퓨터인 Cray-1은 오직 80~130 MIPS였고, 당시 전형적인 데스크탑 컴퓨터는 겨우 1 MIPS 남짓이었다.모라벡의 패러독스 : 이론을 제작하고 기하학적 문제를 해결하는 것은 컴퓨터에게 비교적 쉽지만, 얼굴을 인식하거나 장애물을 피해 방을 가로지르는 것은 엄청나게 어렵다. 이 설명은 왜 연구가들이 1970년대에 영상처리나 로봇에 대해 조금밖에 진전을 보이지 못했는지 아는 데 도움이 된다.프레임 문제, 자격 문제 : 존 맥캐시와 같은 연구가들은 규칙이 규칙 스스로의 구조를 변경하지 못하면 관련 계획 또는 기본 추론 일반 공제를 나타낼 수 없다는 것을 발견했다.폭발적인 조합 수와 비용이성 : 1972년에 리차트 카프(Hichard Karp)는 문제 해결에 지수적 시간이 요구되는 많은 문제를 보여주었다. 하찮은 문제일지라도 이런 문제의 최적의 해답을 찾는 데 상상할 수도 없는 컴퓨터의 시간이 요구되었다. 즉 지금까지 AI '장난감'에서 사용되었던 방법은 실제적으로 유용한 AI 시스템을 제작하는 데 용이하지 못했다.상징적 지식과 추론 : 영상 처리나 자연어 처리 같은 많은 중요한 AI 프로그램은 실제 세상에 대한 간단하지만 어마어마한 양의 정보를 필요로 한다. 그래야 프로그램이 자신이 보고 있는 것이 무엇인지, 또는 자신이 듣고 있는 것이 무엇인지 아이디어를 찾을 수 있기 때문이다. 이 요구는 아기들의 세상에 대해 알아나가는 것과 유사하다. 연구가들은 곧 요구되는 정보의 양이 엄청나게 광대하다는 것을 발견했다. 1970년대의 누구도 이런 데이터가 포함된 데이터베이스를 만들지 못했고, 누구도 이런 데이터를 프로그램 혼자 터득하는 방법을 알지 못했다.
    -자금지원의 중단-
    영국 정보나 DARPA, NRC같은 AI 연구자들에게 자금을 주던 기관들은 연구 진행의 부진에 실망했고 결국 AI에 관한 방향성을 가진 자금 지원을 끊었다. 1966년 기계를 이용한 번역을 비판하는 보고서가 ALPAC에 제출되었을 때부터 이런 흐름이 시작되었다. 총 2천만 달러를 지원한 NRC도 지원을 멈췄다.1973년 라이트힐 보고서는 "장대한 목표(grandios objectives)"를 성취하는 데 실패한 영국의 AI 연구의 상태에 대해 비난했고 결국 영국의 AI 연구소는 해체되었다(보고서는 특히 AI 연구의 실패의 원인이 폭발적인 조합의 수라고 언급했다.DARPA는 CMU의 음성을 이해하는 연구의 연구자들에게 심하게 실망했고 연간 3백만 달러의 지원을 취소했다.1974년에 이르자 AI 연구에대한 투자는 찾기 어려워졌다. 한스 모라벡은 그의 동료의 비현실적인 예측에 의한 위기를 비난했다. "많은 연구가들이 많은 연구자는 과장을 증가시키는 웹에 휘말렸다."그러나 여기엔 다른 이슈가 있다 : 1969년 맨스필드의 수정안의 통과이후, DARPA는 자금 지원에 대해 "비직접적인 기초 연구보다, 임무 완수에 직결된 연구"를 수행하라는 증가하는 압력을 받고 있었다. 창조성 높은 지원, 자유분방한 연구는 1960년대와 함께 떠났고 DARPA에서 다시 오지 않을 것이다. 대신, 자금은 자동조정 탱크나 투 관리 시스템과 같은 분명한 프로젝트와 명확한 목표를 향할 것이다.
    캠퍼스 전역의 비판들-몇 철학자들은 AI 연구가들에게 강력한 반대를 표했다. 초기 반대자들 중 괴델의 불완전성의 원리에 의해 컴퓨터 프로그램같은 시스템이 실제적으로 정확하게 사람과 같이 행할 수 없다고 주장한 사람은 존 루카스(John Lucas)이다. 존 설(John Searle)의 1980년대 제시된 중국인 방 문제는, 실제로 프로그램이 상징들을 '이해'할 수 없고 사용할 수 없음을 보여주려고 시도했다. 설은 만약 상징이 기계에게 아무 의미가 못된다면, 기계는 생각하는 것이 아니라고 주장했다.이 비난은 AI 연구가들에게 심각하게 작용하지 못했다. 비용이성과 상식적 지식에 관한 문제가 훨씬 더 즉각적이고 심각한 듯이 보였다. '노하우'와 '지향성'이 실제 프로그램을 만드는데 어떻게 다른지가 불분명했다. 민스키는 드레이퍼스와 설을 향해 "그들은 오해했고, 무시될 것이다"라고 했다. MIT에서 가르쳤던 드레이퍼스는 냉대받았다 : 그는 나중에 AI 연구가들에게 "나와 점심 식사할 용기도 없다"라고 평했다. ELIZA의 제작자 조셉 웨이즌바움(Joseph Weizenbaum)은 그의 동료인 드레이퍼스가 전문적이지 않고 유치한 대우를 한다고 느꼈다. 웨이즌바움은 케네스 콜비(Kenneth Colby)가 쓴 DOCTOR와 임상치료 채팅봇에 대해서 심각하게 의심하기 시작했다. 웨이즌바움은 콜비가 그의 무심한 프로그램을 진지한 치료 도구로 여기는 걸 방해했다. 이 불화가 시작되고, 이 상황은 콜비가 웨이즌바움을 프로그램에 대한 공로로 인정하지 않았을 때 도움이 되지 않았다. 1976년에 웨이즌바움은 컴퓨터 능력과 인간 추론(Computer Power and Human Reason)을 출판하며 인공 지능의 오용이 인간의 삶을 평가 절하시킬 수도 있다고 주장했다.
    퍼셉트론과 연결망의 어두운 시대-뉴럴 네트워크 형태의 퍼셉트론이 1958년 마빈 민스키의 고등학교 시절 친구였던 프랭크 로센블랫(Frank Rosenblatt)에 의해 도입되었다. 다른 AI 연구가들이 그러하듯, 그는 낙관론을 펼쳤고, "퍼셉트론은 결국 학습을 하고, 의사 결정을 하고, 언어 번역을 할 것이다"라고 예견했다. 60년대를 이끌던 패러다임 속의 연구 프로그램의 수행은 1969년 민스키와 페퍼의 책 퍼셉트론의 출판과 함께 갑자기 중지되었다. 이것은 퍼셉트론이할 수 있는 일에 몇가지 심각한 제한이 있음을, 또 프랭크의 예견은 심하게 과장되어있음을 알렸다. 이 책의 파급력은 압도적이었다 : 향후 10년 동안 뉴럴 네트워크에 대한 거의 모든 연구가 중지되었다. 결국, 뉴럴 네트워크 영역을 회복할 연구원의 새로운 세대가 그 후에 인공지능의 중요하고 유용한 부분을 내놓았다.깔끔이 : 논리, 프롤로그와 전문가 시스템논리적 추론은 1958년 초에 AI 연구에서 존 맥카시가 제안하여 도입되었다.1963년 알렌 로빈슨(J. Alan Robinson)은 간단하게 추론을 컴퓨터에 구현시키는 분해와 통일 알고리즘을 발견했다. 그러나 맥카시와 그의 학생들이 60년대 후반에 했던 것과 같은 복잡하지 않은 구현은 본질적으로 다루기 힘들었는데, 간단한 정리를 증명하기 위해 천문학적 단계가 필요했다. 더 성공적인 결실을 맺는 논리적 접근은 70년대 에딘벌 대학의 로버트 코왈스키프롤로그는 다루기 쉬운 계산을 허용하는 논리의 부분을 사용한다. 규칙은 계속적으로 영향을 미쳤고, 에드워트 페이젠바움(Edward Feigenbaum)이 기대하던 시스템 기초를 제공했으며 알렌 뉴엘과 허버트가 계속 연구하도록 만들었다. 사이먼은 Soar과 인식에서의 통일 이론을 이끌었다.논리적으로의 접근을 비판하는 지적은, 드레이퓨즈가 했던데로, 사람이 문제를 해결할 때 논리를 거의 사용하지 않는다는 것이었다. 피터 왓슨(Peter Waon), 엘리아노 로츠(Eleanor Rosch), 아모스 스벌스키(Amos Tversky), 다니엘 카니만(Daniel Kahneman)을 비롯한 심리학자들이 이를 증명했다.맥카시는 이에 대해서 이 증명이 무관하다고 답했다. 그는 정말 필요한 기계란 사람처럼 생각하는 것이 아니라 문제를 해결할 줄 아는 기계라고 일축했다.
    지저분이 : 프레임과 스크립트-
    맥카시의 접근에 대한 비평가들의 대다수가 그의 동료인 MIT 소속이었다. 마빈 민스키와 사무엘 페퍼와 로저 샹크는 기계를 사람처럼 느껴지도록 만드는 "이야기 이해"와 "물체 인식"의 문제를 해결하려고 노력했다. "의자"나 "음식점" 같은 일반적인 개념을 사용할 때 사람들은 모두 비논리적으로, 사람들이 통용하는 범용적 가정을 함께 했다. 불행하게도 이런 부정확한 가정들은 논리적 절차로 대표하기가 힘들었다. 제라드 서스먼(Gerald Sussman)은 "본질적으로 부정확한 개념을 설명하기위 해 정확한 언어를 사용하는 순간 그들은 더이상 부정확하다고 말할 수 없다"라고 표했다. 또한 섕크는 이에 대해 "비논리적" 접근 즉 "지저분이 "맥카시, 코와스키, 페이젠바움의 "깔끔이" 패러다임과 반대에 있다고 평했다.
    Boom 1980-1987
    1980년대에는 전 세계적으로 사용된 ‘전문가 시스템’이라고 일컫는 인공지능 프로그램의 형태였고 인공지능 검색에 초점이 맞춰졌다. 같은 시기에 일본 정부는 자신들의 5세대 컴퓨터 프로젝트와 인공지능에 적극적으로 투자하였다. 1980년대에 존 홉필드와 데이비드 루멜하트의 신경망 이론의 복원이라는 또 다른 사건이 있었다.
    전문가 시스템의 발전
    전문가 시스템은 특정 지식의 범위에 대해 문제를 해결해주거나 질문에 대답해주는 프로그램이며 전문가의 지식에서 파생 된 논리적 법칙을 사용하였다. 최초의 실험은 1965년 Edward Feigenbaum과 레더버그에 의해 Dendral이 시작하였고 이것은 분광계로부터 화합물을 식별하는 실험이었다. MYCIN은 1972년에 개발되었고 전염되는 혈액 질환을 진단하였다. 이러한 접근법(실험)은 타당성이 입증되었다.1980년, XCON이라 불리는 전문가 시스템은 디지털 장비 회사인 CMU에서 완성되었다. 이 시스템은 매년 4천만 달러를 절약시켜주며 매우 큰 성과를 나타냈다.[89] 전 세계의 회사들은 1985년에 1억 달러 이상을 AI에 사용하여 이를 개발하고 전문가 시스템을 배포하였다. Symbolics, Lisp Machines과 같은 하드웨어 회사와 IntelliCorp, Aion 등의 소프트웨어 회사들이 이를 지원하면서 같이 성장하였다.
    -돈은 되돌아온다 : 5세대 프로젝트-
    1981년, 일본의 국제 무역과 산업 부서는 5세대 컴퓨터 프로젝트를 위해 8억 5천만 달러를 확보해 두었다. 그들의 목적은 기계가 사람처럼 프로그램을 작성하고 대화를 수행할 수 있는 시스템과 언어를 번역하거나 그림을 해석하는 것이었다. 그들은 프로젝트를 위해 기본 컴퓨터 언어로 Prolog를 선택하였다.다른 나라들은 그들만의 고유한 프로그램을 개발하였다. UK는 3억 5천만 달러를 들여 Alvey 프로젝트를 시작했다. 미국 회사들의 컨소시엄은 정보기술과 AI안의 거대한 프로젝트를 투자받기 위해 마이크로 전자공학과 컴퓨터 기술 협력이라는 형태를 취했다.또한 1984에서 1988년 사이에 DARPA는 전략적 컴퓨팅 계획을 설립하고 AI에 대한 투자를 세배로 늘렸다.
    -신경망 이론의 복귀-
    1982년 , 물리학자 John Hopfield는 (현재 ‘Hopfield net’이라고 불리는) 완벽한 새로운 길에서 정보를 프로세스하고 배울 수 있는 신경망의 형태를 증명해냈다. 이 시기에, David Rumelhart는 (Paul Werbos에 의해 발견된) “역전파”라고 불리는 신경망을 개선하기 위한 새로운 방법을 알리고 있었다. 이러한 두 가지 발견은 1970년 이후 버려진 신경망 이론이라는 분야를 복구시켰다.
    -AI의 두번째 암흑기 1987-1993-
    로봇 공학 분야에 관련 된 연구원인 Rodney Brooks 와 Hans Moravec는 인공지능에 대한 완전히 새로운 접근 방식을 주장하였다. AI와 비즈니스 커뮤니티의 매력은 상실했고 경제 거품이라는 고전적 형태의 1980년대에 빠졌다. 붕괴는 정부기관과 투자자들의 ‘해당 분야는 계속해서 비판에도 불구하고 진보해왔다.’는 인식에 비롯된 것이었다.인공지능의 겨울은 1974년에 전문가 시스템에 대한 열정이 통제할 수 없을 정도로 퍼져나가고 이에 대한 실망이 확실히 따라올 것이라는 걱정이 있었고 이 때 투자가 끊기고 살아남은 연구원들에 의해서 “AI winter”이라는 단어가 만들어졌다.결국 최초의 성공한 전문가 시스템인 XCON은 유지하기에 너무 비싸다는 것이 증명되었다. 업데이트하기에도 너무 어려웠고 학습도 되지 않았다. 이 전문가 시스템은 또한 일반적이지 않은 질문을 했을 때 괴상한 행동을 하는 일명 "brittle" 이었고 그들은 일찍이 발견된 이러한 문제들에 의해 결국 희생되었다. 전문가 시스템은 특별한 경우에서만 유용할 뿐이었다.1980년대 후반, Strategic Computing initiative는 AI의 투자를 자르는 데 공이 컸다. DARPA의 새로운 리더쉽은 AI는 이 다음의 파도가 아니라고 결정했고 즉각적인 결과를 나타낼 수 있는 것으로 보이는 프로젝트에 직접적인 투자를 하는 방향으로 결정했다.1991년에는 1981년에 일본에서 5세대 프로젝트의 목표 리스트에 적은 것만큼 성과가 나오지 않았다. 실제로 대화를 계속 이어나가는 것과 같은 어떤 것들은 2010년까지 달성되지 않았다. 다른 인공 지능 프로젝트와 마찬가지로, 실제 가능했던 것보다 기대가 훨씬 컸다.그들의 두려움은 AI에 대해 일련의 재정적 차질이 있었던 1980년 말에서 1990년대 초반에 잘 나타난다. 이 AI winter 기간의 첫 번째 사건은 1987년에 특성화된 AI 하드웨어 시장이 갑자기 무너진 것이다. 1987년에 애플이나 IBM의 데스크탑 컴퓨터들은 급격히 빨라지고 성능이 좋아졌다. 또한 Symblics과 기타 회사들이 만든 데스크탑 컴퓨터 보다 더 비싼 Lisp 기기들보다도 더욱 좋은 성능을 나타냈다. 즉, 더 이상 Lisp 기기들을 살 이유가 사라진 것이다. 전체산업 1억 달러의 절반의 가치가 하룻밤에 사라졌다.
    몸통을 갖는 것의 중요성: Nouvellle AI and embodied reason-1980년대 후반 , 몇몇 연구원들이 로봇 공학을 기반으로 인공 지능에 완전히 새로운 접근법에 대해 찬성하였다.그들은 실제 지능을 보여주려면 기계에도 몸통이 필요하다고 믿었다. - 기계 또한 이 세상에서 인식하고, 이동하고, 살아남고 거래할 줄 알 필요가 있다. 그들은 이런 감각 운동 기술은 상식적인 추론과 같은 더 높은 단계의 기술이 필요하다고 말했고 실제로 추상적인 추론은 인간의 가장 흥미롭거나 중요한 기술이다. 그들은 지능을 바닥에서부터 지어야 한다고 내세웠다.인공 두뇌와 제어 이론에서부터 얻은 접근법은 1960년대까지 인기가 없었다. 또 다른 선구자인 David Marr는 신경 과학 이론으로 한 그룹의 비전을 이끌어 성공적인 배경으로 1970년대에 MIT에 들어왔다. 그는 모든 상식적인 접근법(McCarthy's logic and Minsky's frames)을 거절했고 AI는 시각에 대한 육체적인 기계장치를 심볼릭 프로세싱 하기 전에 가장 바닥에서부터 위로 이해할 필요가 있다고 말했다.
    -AI 2022-현재-
    지금보다 반세기는 더 오래된 AI의 분야는 마침내 가장 오래된 목표 중 몇 가지를 달성했다. 이것은 비록 뒷받침해주는 역할이었지만 기술 산업에 걸쳐 성공적으로 사용되었다. 몇 가지 성공은 컴퓨터의 성능이 증가했기 때문이고 또 다른 몇 가지는 고립된 문제들에 대해 집중하였고 높은 과학적 의무감으로 해 나갔기 때문에 해결되었다. 적어도 비즈니스 분야에서의 AI의 평판은 여전히 처음 같지 않다. 이 분야 내에서는 1960년대 세계의 상상이던 인간 수준의 지능의 꿈을 실현하는 것이 실패로 돌아갔다는 이유로 몇 가지 합의를 하였다. 하위 파트에서 AI의 일부분을 도와주던 모든 요소들은 특정 문제나 접근 방식에 초점이 맞추어졌다.그 후, AI는 여태 해왔던 것보다 더욱 신중해졌고 더욱 성공적이였다. 또한 보안이 중요한 이슈로 떠올랐다. 인공지능의 보안이슈로는 학습된 인공지능을 속일 수 있는 공격형태인 Poisoning Attack, Evasion Attack, 인공지능 모델 자체를 탈취할 수 있는 Model Extraction Attack, 학습된 모델에서 데이터를 추출해내는 Inversion Attack 등이 있다.
    성공 사례와 무어의 법칙-1997년 5월 11일, 디프 블루는 당시 세계 체스 챔피언이던 게리 카스파로프를 이긴 최초의 체스 플레이 컴퓨터가 되었다.2005년 스탠포드의 로봇은 DARPA 그랜드 챌린지에서 연습해 보지 않은 사막 도로 131마일을 자동으로 운전하여 우승하였다.2년 뒤, CMU의 한 팀은 DARPA 도시 챌린지에서 모든 교통 법규를 지키고 교통 혼잡 속에서 자동으로 55 마일을 길을 찾았다.
    지능형 에이전트-1990년대 동안에는 ‘지능형 에이전트’라고 불리는 새로운 패러다임이 다 방면에서 수용되고 있었다.경제학자들의 합리적 에이전트라는 정의와 컴퓨터 과학자들의 객체 혹은 모듈러 정의가 합쳐졌을 때 지능형 에이전트의 패러다임이 완성되었다.지능형 에이전트 시스템은 환경을 인식하고 성공을 가장 극대화할 수 있는 행동을 취한다. 이러한 정의에 의하면 인간과 인간의 조직처럼, 예를 들어 회사처럼 특정 문제를 해결하는 간단한 프로그램을 지능형 에이전트라고 한다.이러한 패러다임은 당시 연구자에게 고립 문제에 대해 연구하고 다양하고 유용한 해결법을 찾는 것을 허가하였다. 또한 서로서로 문제와 해결책을 공통의 언어로 표현하였고 추상적 에이전트를 사용한 경제학이나 제어 이론 등과 같은 다른 개념에도 사용되었다.
    깔끔한 승리-
    AI 연구자는 과거에 사용했던 것보다 더욱 정교한 수학적 도구를 사용하여 개발하기 시작했다.해결하는 데 AI가 필요한 수많은 문제들이 존재하고 있다는 인식은 수학, 경제학 또는 오퍼레이션 연구 등의 분야에서 이미 연구자들이 AI를 사용하여 실현하고 있었다. 공유된 수학적 언어는 높은 수준의 협력, 좋은 평판, 여러 분야를 성공적으로 이끌고 측정과 증명이 된 결과들의 성취를 가능하게 하였다. AI는 더 엄격한 과학 학문이 되었다. 이는 "혁명" 그 자체였으며 "깔끔함"의 승리였다.Judea Pearl의 매우 영향이 큰 1988년 책은 AI에 결정론과 확률을 대입시켰다.사용 중인 많은 새로운 도구(Bayesian networks, hidden Markov models, information theory, stochastic modeling)와 기존의 고전적이 방법들이 최적화되었다. 더 정밀한 수학적 모형이 신경망 네트워크와 진화 알고리즘과 같은 연산 지능적 패러다임을 위해 개발되었다.
    인공지능과 4차 산업혁명-세계는 이미 4차 산업혁명에 진입했으며 인공지능은 빠르게 인간을 대체해 나갈 것이다. 또, 널리 퍼져 있지 않을 뿐 미래는 이미 와 있으며 인공지능, IoT, 클라우드 컴퓨팅, 빅데이터 등이 융합되면서 4차 산업혁명이 발생하고 있다. 과거 산업혁명이 ‘기계근육’을 만드는 과정이었다면 4차 혁명에서는 ‘기계두뇌’가 탄생할 것이다.
    실험적인 AI 연구-인공지능은 1959년에 MIT AI연구소를 설립한 매카시와 마빈 민스키, 카네기멜론 대학교에 인공지능 연구소를 만든 앨런 뉴웰과 허버트 사이먼과 같은 개척자들에 의해 1950년도에 실험 학문으로 시작되었다. 역사적으로, 인공지능 연구는 두 개의 부류 -- 깔끔이(Neats)와 지저분이(Scruffies) -- 로 나눌 수 있다. 깔끔이는 우리가 전통적 혹은 기호적(symbolic) 인공지능 연구라고 부르는 분야로서, 일반적으로 추상적인 개념에 대한 기호적 연산과 전문가 시스템(expert systems)에 사용된 방법론을 가르친다. 이와 상반된 영역을 우리는 지저분이(Scruffies) 또는 연결주의자(connectionist)라 부르는데, 시스템을 구축하여 지능을 구현/진화시키려고 시도하고, 특정 임무를 완수하기 위해 규칙적인 디자인을 하기보다는 자동화된 프로세스에 의해서 지능을 향상시키는 방식이다. 가장 대표적인 예로 신경망(neural network)이 있다.특히 1980년대에 들어서 Back propagation (인공지능 학습방법: Training Method)가 소개되면서 많은 연구가 진행되었음에도, 신경망을 이용한 인공지능은 아직 초보단계이다. 인공신경망 (Artificial Neural Networks)을 이용한 많은 연구가 현재에도 진행되고 있지만, 몇 가지 장애로 인해서 실용화하기엔 아직도 먼 기술이다. 인공신경망을 이용한 인공지능이 어느 정도 실용화되기 위해선 우선 실효성 있는 학습방법 (Training Methods)이 필요하다. Back propagation을 이용한 학습방법이 제안되어 연구되고 있지만, 완전한 학습을 이룰 수 없을 뿐만 아니라, 학습에 사용되는 data들이 서로 orthonormal해야 하는 조건 때문에 항상 불완전한 학습으로 끝나기 쉽다. (Converge to Local Mimimum, not to the optimal minimum: 지역최적해에 머뭄. 즉, 눈먼 장님이 가장 낮은 저지대를 찾는 경우 각 현재 지점에서 아래로 내려가려는 성질이 있는데 이때 눈먼 봉사이므로 특정 지점의 저지대에 도달한 경우, 그 지점에선 어디로 가거나 위로 올라가는 것만 있으므로 앞에 설명한 성질에 의해 바로 전에 찾은 저지대 남으려 하는 성질이 있다는 것을 의미함). 이러한 단점들을 보완하기 위해서 Fuzzy Logic, Neurofuzzy (Neural fuzzy logic) and Genetic Algorithms등을 이용한 학습방법이 연구되고 있으나 전망이 밝지만은 않은 상태이다.미국의 DARPA(미 국방부 최신 기술 연구 프로젝트 관리국)과 일본의 5세대 컴퓨터 프로젝트에 의해서 1980년대 인공지능 연구는 엄청난 연구 기금을 지원 받을 수 있었다. 몇몇 인공지능 선각자들이 거둔 주목할 만한 결과에도 불구하고, 즉각적인 결과를 산출하는 데 실패하게 된다. 이것은 1980년대 후반 인공지능 연구 기금에 대한 대폭적인 삭감을 초래하였고, 인공지능 연구의 침체기를 뜻하는 인공지능의 겨울을 가져왔다. 1990년대, 많은 인공지능 연구가들은 좀 더 구체적인 목적아래 기계 학습, 로보틱스, 컴퓨터 비전과 같은 인공지능과 관련된 하위 영역으로 이동하였고, 순수한 인공지능에 대한 연구는 매우 제한적으로 수행되고 있다.
    -인공지능 기술의 실용적인 응용-
    인공지능의 궁극적인 목표인 인간과 같은 지능의 개발이 어려움을 겪자, 다양한 응용 분야가 나타나게 되었다. 대표적인 예가 LISP나 Prolog와 같은 언어인데, 애초에 인공지능 연구를 위해 만들어졌으나 지금에 와서는 인공지능과 관련이 없는 분야에서도 사용되고 있다. 해커 문화도 인공지능 연구실에서 만들어졌는데, 이 중에서도 다양한 시기에 매카시, 민스키, 페퍼트, 위노그라드(SHRDLU를 만든 뒤에 인공지능을 포기했다)와 같은 유명인의 모태가 된 MIT 인공지능 연구소가 유명하다.
    -Machine vision 시스템들이 하드웨어 검사나 보안분야와 같은 다양한 산업 현장에서 이용되고 있다.광학 문자 판독 시스템은 무작위로 생성된 타자 문서를 텍스트 형태로 변환시킬 수 있다.필기체 인식 시스템이 수백만의 PDA에서 사용되고 있다.음성 인식 기술은 상업적으로 이용 가능하고 광범위하게 적용되고 있다.컴퓨터 대수 시스템인 매스매티카나 Macsyma와 같은 시스템들은 흔하게 사용되고 있다.불확실한 상황에서 추론을 수행하는 기술인 퍼지 논리가 공장의 제어 시스템에서 광범위하게 사용되고 있다.전문가 시스템이 산업적으로 이용되고 있다.인공지능 분야와 과학 소설 분야에서는 인공지능 시스템이 인간 전문가의 판단을 대체하리라는 예상이 계속해서 제기되어 왔다. 오늘날에는 몇몇 공학이나 의약 조제 같은 특정 분야에서 전문가 시스템이 인간 전문가의 판단을 보조하거나 대체하고 있다.
    -인공지능의 이론적인 결과-
    어떤 사람들은 현재 알려진 어떤 시스템보다도 지능적이며 복잡한 시스템의 등장을 예견하기도 한다. 이와 같은 가상적인 시스템들을 '비결정적인 인공지능 시스템'의 약자인 atilect라고 한다. 이와 같은 시스템이 만들어진다면 그동안 인류에게 문제시되지 않았던 많은 윤리적인 문제들이 발생하게 된다.이에 대한 토론은 시간이 흐름에 따라 '가능성'보다는 '의도'에 점점 초점을 맞추게 되었다. 이러한 초점의 이동은 휴고 더개리스(Hugo de Garis)와 케빈 워릭(Kevin Warwick)에 의해 제기된 "Cosmist"(반대말은 "Terran") 논쟁에 의해 이루어졌다. 더개리스에 따르면 Cosmist란 더욱 지능적인 종족을 인간의 후계종으로 만들어 내기 위해 노력한다. 이러한 논의로 미루어 볼 때, '의도'의 문제가 초기 인공지능 "반대파"들에게 큰 문제였음을 알 수 있다.
    흥미로운 윤리적 문제를 제기하는 주제는 다음과 같다.
    인공지능을 정도의 문제로 정의할 수 있는가?이와 같은 시스템들의 자유와 권리 문제
    인간이 다른 동물에 비해 '영리'한 것과 같은 방식으로 인공지능도 인간에 비해 '영리'할 수 있는가?
    지구상의 어떤 사람보다 더욱 지능적인 시스템을 만드는 문제
    이러한 시스템을 만드는 데 있어서 얼마나 많은 안전 장치를 포함시켜야 하는지의 문제
    사람의 생각을 대체하기 위해서 얼마만큼의 학습 능력이 필요한지 혹은 (전문가 시스템과 같이) 그와 같은 학습 능력 없이 주어진 일을 할 수 있는지
    단일성의 문제
    사람의 일자리와 업무에 미치는 영향. 이 문제는 아마도 자유 무역 체제 하에서 발생하는 문제와 유사할 수도 있다.
    인식의 문제
    -유명 인공지능-
    알파고 - 바둑 인공지능이다.
    Watson - IBM에서 만든 인공지능으로, 종류가 다양하며 의학, 금융, 방송 등에 쓰인다.
    The Start Project - 영어로 된 질문에 답변하는 웹 기반 시스템이다.
    Cyc - 실세계와 논리적 추론 능력에 관련된 광범위한 상식으로 구성된 지식기반 시스템.
    ALICE - 사용자와 대화를 주고받을 수 있는 프로그램.
    Alan - 사용자와 대화를 주고받을 수 있는 프로그램.
    ELIZA - 1970년대에 개발된 심리치료사 역할을 하는 프로그램.
    AM - 1970년대에 더글러스 레넛(Douglas B. Lenat)이 개발한 수학의 개념들을 형식화하는 프로그램.
    PAM (Plan Applier Mechanism) - 1978년 John Wilensky에 의해 개발된 줄거리 인식 시스템.
    SAM (Script Applier Mechanism) - 1975년에 개발된 줄거리 인식 시스템.
    SHRDLU - 1968년에서 1970년 사이에 개발된 초창기 자연 언어 인식 시스템.
    Creatures - 뉴널넷 두뇌와 정교한 생화학에 기반한 유전코드로 생명체를 탄생시키고 진화시키는 컴퓨터 게임.
    Eurisko - 휴리스틱으로 구성된 문제 해결 언어. 휴리스틱을 어떻게 사용하며 변경해야 할지에 대한 휴리스틱을 포함하고 있다. 1978년 더글러스 레넛이 개발.
    X-Ray Vision for Surgeons - 매사추세츠 공과대학교 의학 비전(MIT Medical vision) 연구팀이 개발.
    심심이 - 한국어로 대화를 주고받을 수 있는 프로그램. 사용자에 의한 학습이 가능하도록 하여 대중적으로 성공했다. 2002년 최정회에 의해 개발.







    반응형

    '정보과학' 카테고리의 다른 글

    인공 지능 이론과 발전  (0) 2022.11.02
    인공지능  (0) 2022.11.02
    컴퓨터 과학  (0) 2022.11.01